DETERMINATION OF ARTEMISININ IN ARTEMISIA ARBOTANUM AND ARTEMISIA PALLENS BY LC/MS METHOD

J.SURESH 1*, K. MRUTHUNJAYA1, N. PARAMAKRISHNAN2, M. N. NAGANANDHINI1

JSS College of Pharmacy, JSS University, S.S. Nagar, Mysore Email: sureshjoghee@yahoo.com

Received: 25 July 2010, Revised and Accepted: 30 Aug 2010

ABSTRACT

A simple, selective, rapid and precise reverse phase LC/MS method has been developed for the standardization of Artemisia abrotanum and Artemisia pallens (Family: Asteraceae) using Artemisinin as an analytical marker. The method was carried out on a Princeton SPHER C18 (150 x 4.6 mm i.d. 5μ) column with a mobile phase consisting of Acetonitrile: Water (60:40 v/v) at a flow rate of 0.5 ml/min. Detection was carried out at 283 nm. The calibration curve was linear in the range of 10 μg/ml to 140 μg/ml of Artemisinin and the correlation coefficient was 0.9992, indicating good linear dependence of peak area on concentration. The developed method was validated in terms of accuracy, precision, linearity, limit of detection and limit of quantitation. The proposed method can be used for the standardization of Artemisinin in the ethanolic extracts Artemisia abrotanum and Artemisia pallens extract.

Keywords: Standardization; Artemisia abrotanum; Artemisinin, RP-LC/MS

INTRODUCTION

Genus Artemisia (Asteraceae) is popularly known as Sage Brush or Wormwood is bitter aromatics. Artemisia is the largest genus comprising 400 species widely distributed in South America and South America, and 34 species are found in India (Puthele, 2002). This genus is named in honor of Artemis the Greek goddess of charity. Some of them are source of volatile oil. Almost all species consists of sesquiterpene lactones (Slakar, 1992).

Artemisia species invariably found as small fragrant shrubs or herbs and most yield essential oils. Some of these oils found used medicine as vermifuges, stimulants and in perfumery etc., where as the leaves of some species are used as culinary herbs. The plants themselves are popular among gardeners as cultivated ornamentals. Some Artemisia species are used as stomachic, stimulant, flavoring, anthelmintic, antibacterial, anti-inflammatory, antispasmodic, carminative etc (Brisilam, 2000).

Artemisia abrotanum was traditionally considered as an antiseptic, astrigent, emmenagogue, expectorant, febrifuge, stomachic, stimulant, and tonic, anti-inflammatory, vermifuge, spasmylocytic and used for treating upper respiratory tract disease. Infusions make a bitter tonic which strengthens and supports digestive functions by increasing secretions in the stomach and intestines. It has also been used against cancer, cough, fever and tumors (Steinmetz, 1957; Bjork etal, 2002a; Bjork etal,2002b). The plant has been screened for various pharmacological activities such as antiinflammatory, expect orant and spasmylocytic (Bergendroll and sterner,1995;Bjork, 2001).

Artemisia pallens has been widely used in Indian folk medicine for the treatment of diabetes mellitus. This plant is accredited with anthelmintic, antipyretic and tonic properties. It is also considered as a good fodder. The oil possesses antispasmodic, antibacterial, antifungal and stimulant properties (Asokar, 1981).The plant has been screen ed for the following pharmacological activities, antimicrobial, antidia betic, antinociceptive and wound healing activity.

Ramezani et al,(2004) have reported the methanol extracts of aerial parts of four Artemisia species shows antimicrobial activity against two gram positive bacteria, B. subtilis and S. aureus. Bergendorff et sal,(1995) have reported The Spasmolytic flavonols extracted from arial parts of Artemisia abrotanum L(Asteraceae),has show dose dependent relaxing effect on the carbacholine induced contraction of guinea pig trachoa. Because of its widespread use in various geographic regions and to detect its adulteration with other materials, it is important to standardize the different parts of Artemisia abrotanum. Rascal et al,(2004) have reported the wound healing activity of alcoholic and aqueous extracts of Artemisia pallens. They have also found that the wound healing activity due to the presence of its active principle sesquiterpene.

No method of standardization of this potentially bioactive plant has been reported so far. We have therefore, developed an LC/MS method for the standardization of its extract using Artemisinin (Figure 1) as marker compound. The method was validated as per theICH guidelines (ICH, Q2A, 1994 and ICH, Q2B, 1996).

EXPERIMENTAL

Plant material

Artemisia abrotanum and Artemisia pallens were collected from in and around Ootacamund, a famous hill station in southern India, belonging to the district Nilgiris of Tamil Nadu state. The plant was identified and authenticated by Medicinal Plants Survey and Collection Unit, Ootacamund, Tamil Nadu, India.

Extraction procedure

The dried plant material was powdered and passed through sieve no. 20 and extracted separately using methanol by soxhlation. The extracts were concentrated to dryness under reduced pressure and controlled temperature. All extracts were preserved in refrigerated condition till further use.

Chemicals and reagents

Acetonitrile LC/MS grade was procured from Em.ereck (India) Ltd, Mumbai. Water LC/MS grade was obtained from a Milli-QRO (0.2 μ) water purification system. All other chemicals used were of analytical grade.

Apparatus and chromatographic conditions

Chromatographic separation was performed on a Shimadzu® liquid chromatographic system equipped with a LC-10AT-vp solvent delivery system (pump), SPD M-10A VP photo diode array detector and Rhodexy 7725i Injector with 20 μl loop volume. Class-VP 6.01 data station was applied for data collecting and processing (Shimadzu, Japan). A Princeton sPHER C18 (150 x 4.6 mm i.d. 5μ) was used for the separation. Mobile phase of a mixture of Acetonitrile : Water (60:40 v/v) was delivered at a flow rate of 0.5 ml/min with detection at 283 nm. The mobile phase was filtered through a 0.2 μ membrane filter and degassed. The injection volume was 10 μl. Analysis was performed at ambient temperature.
Preparation of artemisinin standard stock solution
Accurately transfer 10 mg of artemisinin working standard into a 10 ml volumetric flask and dissolve in methanol. Make the final volume with methanol to give 1.0 mg/ml solution of artemisinin. Label and store the solution in a refrigerator below 2-8°C.

Preparation of sample solution
Artemisinin extracts 10 mg was accurately transferred into a 10 ml volumetric flask and dissolve in methanol. Final volume was made up with methanol to give 1.0 mg/ml solution of artemisinin.

RESULTS AND DISCUSSION

Chromatography
Standardization of Artemisinin in Artemisia abrotanum and Artemisia pallens by RP-LC/MS method was carried out using the optimized chromatographic conditions. Typical chromatogram of Artemisinin (Figure 2, 3) and ethanolic extract of Artemisia abrotanum and Artemisia pallens were shown in Figures 4 and 5. Detection was done at 283 nm. The peak area ratios of standard and sample solutions were calculated. The assay procedure was repeated six times and the mean peak area and mean peak area ratio of standard were calculated. The results are given in Table 1. The low relative standard deviation (RSD) values are indicative of the high accuracy and precision of the method.

Method validation
Accuracy and precision
The accuracy of the method was determined by recovery experiments. The recovery studies were carried out six times and the percentage recovery and standard deviation of the percentage recovery were calculated and is presented in Table 2. From the data obtained, added recoveries of standard drugs were found to be accurate.

The precision of the method was demonstrated by inter-day and intra-day variation studies. In the intra day studies, six repeated injections of validation samples (50, 100 and 150 µg/ml) were made for three consecutive days and peak area and percentage CV were calculated and is presented in Table 3. From the data obtained, the developed RP-LC/MS method was found to be precise.

Linearity and Range
The linearity of the method was determined at five concentration levels ranging from 10 to 150 µg/ml. The calibration curve was constructed by plotting peak area against concentration of drugs. The slope and intercept value for calibration curve was y = 12557 (R² = 0.9992). The results show an excellent correlation between peak area and concentration of Artemisinin within the concentration range indicated above. The calibration curve is shown in Figure 6.

Limit of Detection and Limit of Quantification
The Limit of Detection (LOD) (the smallest concentration of the analyte that gives a measurable response, signal to noise ratio of 3) and Limit of Quantification (LOQ) (the smallest concentration of the analyte, which gives response that can be accurately quantified, signal to noise ratio of 10) of the developed method were determined by injecting progressively low concentrations of the standard solutions using the developed RP-LC/MS method. The LOD and LOQ were found to be 50, 100 and 150 ng/ml, respectively (Table 4).

Ruggedness and Robustness
The ruggedness of the method was determined by carrying out the experiment on different instruments like Shimadzu LC/MS (LC-10AT), Agilent LC/MS and Water’s Breeze LC/MS by different operators using different columns of similar type like Hypersil C18, Phenomenex Luna C18 and Hichrom C18. Robustness of the method was determined by making slight changes in the chromatographic conditions. It was observed that there are no marked changes in the chromatograms thus demonstrating that the developed RP-LC/MS method is rugged and robust.

System suitability studies
The column efficiency and peak asymmetry were calculated for the standard solutions. The values obtained demonstrated the suitability of the system for the analysis of Artemisinin in ethanolic extracts of Artemisia abrotanum and Artemisia pallens. System suitability parameters may fall within ± 3 % standard deviation range during routine performance of the method (Table 4).

<table>
<thead>
<tr>
<th>Extract</th>
<th>Amount of Artemisin [% w/w]</th>
<th>RSD (%) (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisia abrotanum</td>
<td>0.0115</td>
<td>2.73</td>
</tr>
<tr>
<td>Artemisia pallens</td>
<td>0.1031</td>
<td>4.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extract</th>
<th>Amount of Artemisin present in (ng) A</th>
<th>Amount of Artemisin Added to A (ng) B</th>
<th>Total Artemisin Taken (A+B) (ng) C</th>
<th>Total Artemisin found (ng) D</th>
<th>% Recovery (D/C) x 100 (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisia abrotanum</td>
<td>500.0</td>
<td>250.0</td>
<td>750.0</td>
<td>741.0</td>
<td>98.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Intra-day (n =6)</th>
<th>Inter-day (n =6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy (%)</td>
<td>Precision (CV)</td>
</tr>
<tr>
<td>50.0</td>
<td>97.05</td>
<td>5.01</td>
</tr>
<tr>
<td>100.0</td>
<td>98.65</td>
<td>1.64</td>
</tr>
<tr>
<td>150.0</td>
<td>99.56</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Table 4: System suitability studies

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parameters</th>
<th>Artemisinin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Theoretical Plate</td>
<td>3500</td>
</tr>
<tr>
<td>2</td>
<td>Asymmetric factor</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>LOD (ng/ml)</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>LOQ (ng/ml)</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>Tailing factor</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 1: Structure of Artemisinin

Fig. 2: Standard chromatogram of Artemisinin

Fig. 3: Chromatogram of Artemisinin Standard at Sim (+) Mode

Fig. 4: Typical chromatogram of Artemisia abrotanum

Fig. 5: Typical chromatogram of Artemisia pallens

Fig. 6: Calibration curve of Artemisinin

CALIBRATION CURVE OF ARTEMESININ

\[y = 12557x + 1 \]

\[R^2 = 0.9994 \]
CONCLUSION

The proposed RP-LC/MS method for standardization of Artemisinin in ethanolic extract *Artemisia abrotanum* and *Artemisia pallens* is simple, rapid, accurate, precise, linear, rugged and robust. Hence the present RP-LC/MS method is suitable for the standardization of Artemisinin in *Artemisia abrotanum* and *Artemisia pallens*.

ACKNOWLEDGEMENT

The authors sincerely thank Dr. H.G. Shivakumar, Principal, J.S.S. College of Pharmacy, Mysore, for his support and encouragement. Our gratitude goes to J.S.S. University, Mysore, for providing all the necessary facilities.

REFERENCES

12. Stenimetz E.F. Codex vegetabilis. Published by the author Amsterdam 1957.
15. ICH, Q2A Text on validation of analytical procedures, International Conference on Harmonization, October, (1994).